INDUCEMENT OF COGNITIVE CONFLICT IN THE TEACHING OF GAMES TACTICS IN PHYSICAL EDUCATION

Iakovos Mastrogiannis1*, Panagiotis Antoniou2 and Katerina Kasimatis3

1PhD candidate, Democritus University of Thrace, GREECE, iakomas@sch.gr
2Assoc. Prof. Dr., Democritus University of Thrace, GREECE, panton@phyed.duth.gr
3Asst. Prof. Dr., School of Higher Pedagogical and Technological Education, GREECE, kasimati@aspete.gr

*Corresponding author

Abstract

Physical Education has been and is still dominated by the behaviorist philosophy’s technical approach to teaching and learning, which focuses on the development of technical skills in isolation from the context in which they unfold, i.e. the game situation. A growing number of scientists and researchers in the field claim that this has resulted in the inability of students to transfer the technical skills in the actual game. Moreover, it has effected reduced participation and alienation of students from physical activity. According to constructivist theory, students come to class with existing conceptions or preconceptions regarding the world around them and, if ignored by the teacher, they are simply suppressed, not eliminated. Also, learning is viewed as a process of changing student preconceptions to meet accepted conceptions in each scientific discipline or, to use the commonly accepted term, as a process of conceptual change.

The inducement of cognitive conflict constitutes a commonly used instructional strategy in sciences for the achievement of conceptual changes in students’ cognitive structures. A necessary prerequisite to inducing cognitive conflict is the elicitation of student preconceptions so that they are taken under consideration for the design and implementation of subsequent instructional interventions. Additionally, the constructivist philosophy’s tactical approach to teaching in Physical Education, advocates a more holistic approach to learning. It incorporates the cognitive dimension into the learning and teaching of Physical Education. It focuses on the understanding of the game and on game tactics in the realistic context of game-playing, before the learning and development of the technical aspect. The aim of the present paper is to highlight the potential of using the instructional strategy of inducement of cognitive conflict between student preconceptions on game tactics and accepted conceptions in the discipline, in the context of the tactical model of teaching and learning in Physical Education.

Keywords: Cognitive conflict, Preconceptions, Physical Education, Tactical Model, Conceptual Change, Constructivism.

1. THEORETICAL FRAMEWORK

1.1. Constructivist theory and learning

The consideration of the student as the architect of his own learning stems from the Piagetian logic on learning (Driver, 1989). Piaget (1964) suggests two fundamental principles underpinning learning:

- adaptation and
- organization

Organization refers to the natural tendency of an individual to organize his conceptions into related, interconnected structures, the most basic of which is the schema. The organization of these conceptions is encountered in literature with terms such as cognitive structure (Vosniadou & Mason, 2012; Scott et al., 1991; Driver & Scanlon, 1988; Champagne et al., 1985) or conceptual framework (Hewson & Hewson, 1983) or alternative framework (Nussbaum & Novick, 1982; Driver & Easley, 1978) or mental representations or
conceptual schemes (Driver, 1989) or merely conceptions (Hewson & Hewson, 1983) or representations (Limón, 2001).

Adaptation refers to the inherent need of an individual to maintain a state of cognitive balance or, according to Piaget’s own term, a state of equilibration. When a student recognizes a contradiction between his existing conceptions (preconceptions) and new knowledge and realizes his inability to resolve it based on his existing knowledge, he attempts to reduce the discrepancy through the mechanisms of assimilation and accommodation. In other words, the awareness of this contradiction (conflict) constitutes a motivating factor for resolving it (Chi, 2008; Nussbaum & Novick, 1982; Posner et al., 1982; Stavy & Berkovitz, 1980). In literature, it is referred to with terms such as disequilibrium (Piaget, 1964), cognitive dissonance (Festinger, 1957) and more recently with the most common terms of conceptual conflict (Hewson & Hewson, 1984) or cognitive conflict (Lee & Kwon, 2001; Limón, 2001).

1.1.1 The Learning Process of Conceptual Change and Student Preconceptions

The constructivist learning theory -in contrast to the behaviorist learning theory that views learning as a fragmentary accretion of new knowledge- views learning as a process of changing student conceptions or, to use the commonly accepted term, as a process of conceptual change (Scott et al., 1991; White & Gunstone, 1989; Hewson & Hewson, 1984; Hewson & Hewson, 1983). There are two forms of conceptual change (Posner, Strike, Hewson, & Gertzog, 1982):

A. Assimilation: Students address a new situation using existing conceptions, incorporating new conceptions into their existing cognitive structure. It is the mildest form of conceptual change and is relatively easily accomplished.

B. Accommodation: Students’ preconceptions are not adequate enough to allow them address new situations. Students must either reorganize their preconceptions or replace them with new ones. It is the most radical -and relatively hard to accomplish- form of conceptual change.

Another fundamental constructivist principle opposing to behaviorist consideration of students as tabula rasa, is that students come to class with already formed preconceptions regarding the world around them (Duit et al., 2008; Limón, 2001). This entails serious implications to learning due to the enormous explanatory power they provide to students (Driver, 1989; Posner, Strike, Hewson, & Gertzog, 1982). Hence, these preconceptions resist strongly to attempted changes (White & Gunstone, 2008; Windschill & Andre, 1998; Driver, 1989; Hewson & Thorley, 1989; Champagne et al., 1982) and constitute the supportive framework upon which all future learning is based (Millar, 1989; Driver, 1989; Driver & Scanlon, 1988). According to Komis (2001), if they are ignored by the teacher, they are simply suppressed, not eliminated.

For conceptual change to be accomplished, preconceptions held by students have to be elicited and taken under consideration before any instructional intervention (Duit et al., 2008; Scott et al., 1991; Hewson & Hewson, 1984). Indeed, knowledge of student preconceptions provide significant information on their existing cognitive structure and facilitates the design of more efficient interventions (Limón: Users\USER07\APOPA\constructivism\COGNITIVE_CONFLICT\On the cognitive conflict as an instructional strategy for conceptual change-a critical appraisal-Table 1.doc, 2001; Kokkotas, 1998). Moreover, recruiting typical instructional strategies, i.e. ignoring student preconceptions, entails the risk of students perceiving scientific conceptions as irrational (Hewson & Hewson, 1983). Nevertheless, even though the research community has provided ample evidence, there has been inadequate diffusion into the teacher community thus far and, as a result, conceptual change instructional strategies are scarcely practiced in school (Vosniadou & Mason, 2012).

A fortunate finding -of significance to learning and instructional design- is that of the commonality student preconceptions exhibit in several science content areas and across students belonging to different nationalities and cultures (Tan et al., 2008; Cetin, 2007; Goh, Khoo & Chia, 1993; Driver, 1989; Vosniadou & Brewer, 1987; Champagne et al., 1982).

1.1.2 Inducing cognitive conflict for conceptual change

The instructional strategy of cognitive conflict has been used in large scale, mainly in sciences, since the 1980s. Since, a significant amount of research on its impact was triggered (Tsai & Chang, 2005; Limón: Users\USER07\APOPA\constructivism\COGNITIVE_CONFLICT\On the cognitive conflict as an instructional strategy for conceptual change-a critical appraisal-Table 1.doc, 2001; Nussbaum & Novick, 1982; Stavy & Berkovitz, 1980) and cognitive conflict is recognized as fundamental in achieving conceptual change (Vosniadou & Mason, 2012; Limón: Users\USER07\APOPA\constructivism\COGNITIVE_CONFLICT\On the
cognitive conflict as an instructional strategy for conceptual change—a critical appraisal-Table 1.doc, 2001; Chan et al., 1997; Posner, Strike, Hewson, & Gertzog, 1982).

A prerequisite, and a decisive factor for the successful inducement of cognitive conflict, is considered to be the elicitation and in-depth knowledge of student preconceptions before each attempted teaching intervention (Duit et al., 2008; Limón, 1991; Scott et al., 1987). Being aware of student preconceptions, the teacher has set the foundations for the planning of teaching approaches that formulate favorable conditions for inducing cognitive conflict. This involves the design of appropriate learning activities on the basis of their potential to provide opportunities for students to, initially, activate and then challenge and directly question their preconceptions (Limón, 1991; Scott et al., 1987). For a new conception, to effect conceptual change, a new conception should, in most cases, satisfy three conditions: (1) be intelligible, (2) be plausible, and (3) be fruitful.

1.1.3 Conditions for conceptual change

How does cognitive conflict, though, affect the learning process? When a student recognizes a cognitive conflict, this recognition motivates him to resolve the conflict either by trying to reorganize the existing conceptions or by seeking new information (Biggs, 1990; Keller, 1987; Posner, Strike, Hewson, & Gertzog, 1982; Piaget, 1967).

According to the conceptual change model of Hewson (1981) and Posner, Strike, Hewson and Gertzog (1982), to effect conceptual change, a new conception should, in most cases, satisfy three conditions:

I. It has to be **intelligible**. Teachers spend most of their time in making new conceptions intelligible to students. A student will not adopt a new conception unless it is considered as intelligible, i.e. the student must understand what the conception means. Scott et al. (1991), in a review of relevant literature on pedagogical strategies based on the inducement of cognitive conflict, argue that such strategies can be effective because viable alternative solutions (new conceptions) originate from students themselves and become understood as a result of discussion and inquiry among students.

II. It has to be **plausible**. For a new conception to be considered as plausible, i.e. believable, the student has to consider it as intelligible and, in addition, believe that it is potentially true. This means that it must be compatible with his preconceptions. Therefore, the investigation of student preconceptions should precede the inducement of cognitive conflict so that teachers have an understanding of what would -more likely- seem plausible or implausible to students and then adjust instructional interventions accordingly.

III. It has to be **fruitful**. A new concept is considered to be fruitful, i.e. fertile, useful, if it provides students the capability to resolve hitherto unsolved problems. In other words, if it accomplishes something of value to the student, if it introduces new directions, provides new possibilities, new approaches and ideas.

In conclusion, for a new conception to be adopted against an existing one and conceptual change to occur in a student’s cognitive structure, initially the student has to experience dissatisfaction with the existing conception, i.e. to experience a conflict between the existing and the new conception. If the new conception is intelligible, initially plausible and provides greater explanatory and predictive capabilities, then favorable conditions have been formed for the displacement of the existing conception. These conditions determine the status of a conception. The degree to which a conception meets these three conditions (intelligible, plausible and fruitful) establishes its status (Cakir, 2008; Hewson, 1981). The more of these conditions are met the higher the status of the conception. The conditions that shape the status of a conception are applicable to both conceptions already held by the student and those under consideration. Therefore, during the learning process of inducing cognitive conflict, effort should be directed towards maximizing the status of a new conception while minimizing the status of the existing conception to facilitate conceptual change. According to the
conceptual change model of Hewson and Posner et al., employing problematic situations that highlight the explanatory inability of student preconceptions and reducing their status, can greatly assist the adoption of a new concept, provided that the student recognizes the problematic situation (cognitive conflict).

1.2. From the Technical to the Tactical Approach of teaching in Physical Education

Current everyday practice indicates that games occupy the majority of the time in Physical Education classes (Webb & Pearson, 2008; Brooker, Kirk, Brayuka, & Bransgrove, 2001; Rink, French, & Tseeleidma, 1996). Yet, the focus lies on activities for the learning of technical elements (Light, 2008; Kirk & MacPhail, 2002; Turner, 1996; Thorpe & Bunker, 1989), following the behaviorist philosophy’s technical approach to teaching and learning in Physical Education (Light, 2008). Practicing technical skills isolated from the context in which they unfold, i.e. in the game situation, results in a “coaching” approach (Light, 2008, p. 23) to teaching games at school and an inability to transfer these skills in the actual game (Adam, 2013; Hopper, 2002; Kirk & MacPhail, 2002; Brooker, Kirk, Brayuka, & Bransgrove, 2001; Turner, 1996). Alarming as this may be, though; most disquieting is the fact that the technical approach has effected reduced participation and alienation of students from physical activity (Webb & Pearson, 2008; Graham, 1995) and marginalization of low-skilled students of both sexes (Adam, 2013; Ennis, 1999).

Physical Education has been affected by a generalized shift in the international research community, since the late 1980s, towards constructivist approaches to learning. Bunker and Thorpe (1982) were the first to propose the teaching model of TGfU (Teaching Games for Understanding), which encapsulates the principles and philosophy of the tactical approach to teaching and learning in Physical Education, adhering to constructivist philosophy. Since then, several variations of the TGfU model have emerged with the terms Sport Education (Siedentop, 1994), Tactical Games (Griffin et al., 1997), Game Sense (Australian Sports Commission, 1999), Play Practice (Lauder, 2001) Conceptual-based Games, Game Centred Approach, Tactical Decision Learning Model and more.

The tactical pedagogical model views learning in a holistic manner, by bringing the cognitive dimension into the forefront. Tactics, decision-making and understanding of the game take priority over the development of technical skills (Adam, 2013; Webb & Pearson, 2008; Kirk, 2005; Kirk & MacPhail, 2002; Rink, 2001). In doing so, it involves students in modified games or the real game—depending on students’ developmental level—right from the start (Grehaigne, Richard, & Griffin, 2005; Kirk & MacPhail, 2002; Thorpe, 1990), integrating learning and teaching in the realistic context of game situations (Clark & Harrelson, 2002). The need for the learning and improvement of technical skills arises from the demands of real game-playing (Grehaigne, Brooker, & Patton, 2005; Grehaigne, Richard & Griffin, 2005; Hopper, 2002) and their practice follows the regular practices used in the technical approach (Kirk & MacPhail, 2002). The tactical approach is based on the assumption that knowledge of game tactics will improve students’ decision-making abilities during game-playing, thereby improving overall performance (Brooker, Kirk, Brayuka, & Bransgrove, 2001), increasing physical activity levels and engagement (Forrest, Webb and Pearson, 2006), while making games more interesting (McKean, Webb, & Pearson, 2007).

2. DISCUSSION AND SUGGESTIONS

As emphasized by Grehaigne, Richard and Griffin (2005), the process of teaching and learning of games is not an “all or nothing” matter, but rather a matter of defining the aspect in focus. According to a study conducted by French & Thomas (1987), the strongest distinguishing factor between children, regarding performance in beginners and expert players, is knowledge and cognitive skills rather than any physical ability. Research on the importance of cognitive processing in Physical Education (Solmon, 2006) and strategic knowledge in games (Dodds et al., 2001), have also been documented. Abernethy (1996) and Kirk and MacPhail (2002) recognize as well the importance of cognitive skills as preceding and interrelated to the execution of a movement. Nevertheless, Physical Education teachers insist on neglecting cognitive and focus on physical aspects of learning (Bell, 2005; Light & Fawns, 2003). In addition, they resist adopting student-centered approaches to a greater extent than educators in other disciplines (Light & Georgakis, 2005), while behaviorist approaches keep a strong grip on Physical Education.

The constructivist philosophy’s, student-centered tactical approach provides fertile ground that allows for the integration of the cognitive dimension of learning in the teaching of games in Physical Education, thus approaching learning and teaching in a holistic manner. In the context of the conceptual change model of Hewson and Posner et al., since the instructional strategy of inducing cognitive conflict has been proven effective in the revision of student preconceptions, it is suggested that it is used in the teaching and learning of game tactics in Physical Education. Students, even before formal teaching takes place, hold certain preconceptions in regard to cultural forms of games—like basketball, football or volleyball—shaped through
experience and exposure to mass media (Kirk & MacPhail, 2002). To effectively challenge student preconceptions regarding particular game tactics and to successfully induce cognitive conflict, the elicitation of these student preconceptions has to take precedence. Students should have the opportunity to clearly state their preconceptions on game tactics in the realistic context of a game.

Having acquired knowledge of student preconceptions, Physical Education teachers can identify possible misconceptions and outline the cognitive path students have to follow in the conceptual change process of adopting the accepted conceptions in the discipline. This facilitates the design of those activities that could potentially induce cognitive conflict to students, i.e. It provides a sense of what might be considered as intelligible, plausible and fruitful to students, thus increasing the chances of meeting the prerequisite conditions for conceptual change. Hence, the proposed instructional approach views learning, not as an accumulation of information in students memory, but rather as a process of conceptual change and focuses on the understanding of the game before the development of technical skills.

One might argue that the whole process of eliciting student preconceptions and inducing a cognitive conflict is time-consuming and an unfeasible task to realize in a Physical Education curriculum. On the other hand, if commonality in student misconceptions regarding particular game tactics is detected and documented (as holds true in science), that would provide a starting point and enable an informed teacher to concentrate on inducing cognitive conflict. Moreover, research on cognitive conflict inducing activities for specific game tactics could lighten the burden of designing learning activities from scratch.

REFERENCE LIST


